BLUE PRINT OF MODEL QUESTION OF MATHEMATICS (XII)

SR.	SUBJECT	No. Of Objective	No. Of Short	No. Of long
NO.		type question	answer type	answer type
	and the second second second	(Probable)	question (Probable)	question
1	. Dig a logilling		5	(Probable)
1	Relation & function	08	03	_
2	Calculus	20	08	02
3	Algebra	07	04	-
4	Probability	06	03	_
5	Vector & 3D-	06	04	01
	Geometry			
6	Linear-Programming	03	-1	01
-	Problem			

SET (प्रारुप पत्र)-1

SECTION (खण्ड) -1

OBJECTIVE QUESTIONS (वस्तुनिष्ठ प्रश्न)

Time: [1 Hrs + 10 Min (Extra)]

Full Marks: 50

समय : 1 घंटा + 10 मि० (अतिरिक्त)

पूर्णांक

प्रश्न -1 से 50 तक निम्न में से दिए गए चार विकल्पों में से एक ही उत्तर सही है, प्रत्येक प्रश्न के सही उत्तर को उत्तर तालिका में चिन्हित करें। 50X1 = 50

From Question no. 1 to 50 there is one correct answer for each question you have to msark that correct option from the given options.

50X1 = 50

1. संबंन्ध R = $\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ समुच्चय A= $\{1,2,3,4\}$ पर कैसा संबंन्ध है ?

[What type of a relation is $R = [\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ on the set $A = \{1,2,3,4\}$]

- (a) स्वत्ल्य (reflexive)
- (b)संक्रमक (transitive)
- (c)समित (Symmetric) (d) इनमें से कोई भी नहीं (None of these)
- 2 $\sin^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) = ?$

 - (a) $\frac{4\pi}{3}$ (b) $\frac{2\pi}{3}$
- $(c)\frac{\pi}{2}$
- (d) इनमें से कोई भी नहीं

- ab 1 1/c
 - (a) $\frac{1}{abc}$
- (b) 0
- (c) abc
- (d) इनमें से कोई भी नहीं
- 4 यदि (If) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ तो (then) $A^2 = ?$

 - (a) 2A (b) 3A (c) 27A

(d) I

(then which will be value of y from the following ?)

- (a) 2
- (b) 4
- (c)5
- (d) इनमें से कोई भी नहीं। (None of these)

6 यदि (if)
$$y = \sin(\log x)$$
 तो (then) $\frac{dy}{dx} = ?$

- (a) $-\frac{\cos(\log x)}{x}$ (b) $\frac{\cos(\log x)}{x}$ (c) $\frac{\sin(\log x)}{x}$ (d) इनमें से कोई भी नहीं।

7. यदि (If)
$$y = x^3 + 4x^2 + 6$$
 तो (then) $\frac{d^2y}{dx^2} = ?$

- (a) $3x^2 + 4$ (b) $3x^2$
- (c) 6x
- (d) 3x

8. त्रिज्या r के सापेक्ष वृत के क्षेत्रफल की परिवर्तन की दर, जब r=14 सेंoमीo है और $(\pi=\frac{22}{7})$ (The rate of change of area of a circle with respect to its radius r, when r = 14 cm and $(\pi = \frac{22}{3})$ is)

- (a) $44 cm^2 / cm$
- (b) $88 cm^2 / cm$
- (c) $28 cm^2 / cm$
- (d) $22 cm^2 / cm$

9. वक्र $y=x^2$ के विन्दु (0,0) पर स्पर्श रेखा द्वारा x-अक्ष के धनात्मक दिशा के साथ बनाया गया कोण है : [The angle that the tangent to the curve $y = x^2$ at (0,0) makes with the positive direction of the x -axis is]

- (a) 45°
- $(b) 90^{\circ}$
- $(c) 0^{\circ}$
- (d) 60°

10. फलन $f(x) = 4x^2 - 4$, $x \in \{-1,1\}$ के लिए रोले के साध्य में C का मान है : [The value of c in Role's theorem for the function $f(x) = 4x^2 - 4$, $x \in \{-1,1\}$ is]

- (a) 4

- (b) $\frac{1}{4}$ (c) 0 (d) इनमें से कोई भी नहीं। (None of these)

11. $\int_{-\frac{\pi}{2}}^{\pi} \sin^7 x dx = ?$

- (a) 1
- (b) -1
- (c) 0
 - (d) इनमें से कोई भी नहीं। (None of these)

12. $\int \frac{1}{x} dx = .$?

(a) $log_{e^{1/x}}$ (b) log_{e^x} + c (c) log_{a^x} +c (d) इनमें से कोई भी नहीं। (None of these)

13 $\int \tan x \, dx = .$?

(a) $\log \cos x + c$ (b) $\log \sec x + c$ (c)) $\log \cot x + c$ (d) इनमें से कोई भी नहीं। (None of these)

14.	The state of the s			ण्ड से घेरा क्षेत्र का क्षेत्रफल ment of the latus rectum is]
	(a) $\frac{4a.^2}{3}$ unit. ²	(b) $\frac{8a.^2}{3}$ unit. ²	(c) $\frac{16 a.^2}{3}$ unit. ²	(d) $\frac{2 a.^2}{3}$ unit. ²
15.	माना कि $\mathbf{f}(x) = \int_1^x c$	dt तो समीकरण x^2 $-$	$f^1(x) = 0$ के वास्त	विक मूल है,
	[if $f(x) = \int_{1}^{x} \sqrt{2 - t^2}$	dt then real roots	of the equation x^2 -	$-f^1(x) = 0 \text{ are}]$
	(a) $\pm \frac{1}{2}$	(b) <u>+</u> 1	(c) $\pm \frac{1}{\sqrt{2}}$	(d) <u>+</u> 2
16.	अवकलन समीकरण ($\frac{d^2y}{dx^2}\right).^4 + 3\left(\frac{dy}{dx}\right).^3 -$	$+9y = \cos x$ का कोवि	हे है।
	[The order of the	e differential equa	tion $\left(\frac{d.^2y}{dx^2}\right).^4 + 3\left(\frac{dy}{dx}\right)$	$(x^2)^3 + 9y = \cos x is$
	(a) 4	(b) 3	(c) 2	(d) इनमें से कोई नहीं।
17.	$\hat{\mathbf{i}} \times (\hat{\mathbf{j}} \times \hat{k})$ का	मान निम्नलिखित में से व	गैन सा है ?	
	[which of the fol	lowing is the value of	$f \hat{I} \times (\hat{J} \times \hat{k})?$	
	(a) \hat{k}	(b) Ô	(c) î	(d) ĵ
18	सरल रेखा $2x =$	3y = -z और $6x =$: -y = - 4 z के बीच क	न कोण है।
	[The angle b	petween the straight	2x = 3y = -z ar	and $6x = -y = -4z is$]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{2}$	(c) 0	(d) $\frac{\pi}{4}$
19.	दो पासे के फेंक में	ं जोड़ा पाने की प्रयिकता	ਵੈ [The chance of gett	ing a doublet with 2 dice is]
	(a) $\frac{1}{6}$	(b) $\frac{5}{2}$	(c) $\frac{2}{3}$	(d) $\frac{5}{36}$
20	यदि \vec{a}, \vec{b} और \vec{c} ए	एक दूसरे के लम्बवत इक	गई सदिश हो तो $(\vec{a} - \vec{b})$	$(\vec{b} - \vec{c})^2 + (\vec{b} - \vec{c})^2 + (\vec{c} - \vec{a})^2 = ?$
	(a) 6	(b) 3	(c) 4	(d) 9
	[If \vec{a}, \vec{b} and \vec{c} are	unit vectors perpendic	cular to each other the	$(\vec{a} - \vec{b})^2 + (\vec{b} - \vec{c})^2 + (\vec{c} - \vec{a})^2 = ?$

(c) 4 (d) 9

(a) 6

(b)3

- 21. $\begin{vmatrix} \cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{vmatrix} = ?$

 - (a) 1 (b) $\frac{\pi}{2}$
- (c) 0
- (d) इनमें से कोई भी नहीं। (None of these)
- 22. यदि (If) $P(A) = \frac{3}{\epsilon}$, P(B) = 1 और A तथा B स्वतंत्र घटनाएँ है (A and B are mutually independent events) तो (then) $P(A \cap B) = ?$
 - (a) 5

- (b) $\frac{3}{25}$ (c) $\frac{1}{25}$ (d) इनमें से कोई भी नहीं। (None of these)
- 23. यदि संक्रिया \star परिभाषित है कि ($a \star b$) = $a^2 + b^2$ तो ($3 \star 4$) = 5 है। [If the operation \times is defined as $(a \times b) = a^2 + b^2$ then $(3 \times 4) = 5$ is (c)625(a) 650 (d) 3125 (b) 125
- 24 यदि $f: R \to R$ जहाँ f(x) = 3x, तो कैसा फलन होगा ?

If: $R \to R \to R$ such that f(x) = 3x, then what type of a function is f?

- (a) एकैक अंत्रश्रेणी(One One into) (b) एकैक आच्छादक(One One onto)
- (c) अनकैक अंतक्षेपी (many One into) (d) अनेकैक अंतक्षेपी (many One onto)
- 25. वास्तविक संख्याओं के समृच्चय में संबंध ''बडा है'' निम्नलिखित में कैसा संबन्ध है ?
 - (a) केवल सममित

(b) केवल स्वतृल्य

(c) अनकैक संक्रमक

(d) तुल्यता संबंध

[What type of a relation is "greater than" in the Set of real numbers ?]

(a) Only Symmetric

(b) Only reflexive

(c) Only transitive

- (d) Equivalence relation
- यदि (If) $\sin^{-1} x = \frac{\pi}{5}$, $x \in (-1,1)$ तो (then) $\cos^{-1} x = ?$ 26. (b) $\frac{7\pi}{10}$ (c) $\frac{3\pi}{10}$ (d) $\frac{9\pi}{10}$

- $Sin\left(\cot^{-1}x\right) = ?$ 27.
 - (a) x

- (b) $\sqrt{1+x^2}$ (c) $(1+x^2)^{-1/2}$ (d) $(1+x^2)^{-3/2}$
- यदि $\lambda \in \mathbb{R}$ और $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ तो $\lambda \Delta$ बराबर होगा ?

[If $\lambda \in \mathbb{R}$, and $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then $\lambda \Delta$ is equal to?

 $(a)\begin{vmatrix} \lambda a & b \\ \lambda c & d \end{vmatrix}$ (b) $\begin{vmatrix} \lambda a & b \\ c & d \end{vmatrix}$ (c) $\begin{vmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{vmatrix}$ (d) इनमें से कोई नहीं (None of these)

यदि ७ और २, समीकरण $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \end{vmatrix} = 0$ के दो मूल है तो तीसरा मूल होगा ? 29.

[If 7 and 2 are two roots of the equation $\begin{vmatrix} 2 & x & 2 \end{vmatrix} = 0$ then the third root is?]

- (b) −9 (c) 14 (d) इनमें से कोई नहीं (None of these)

यदि $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ तो निम्नांकित में कौन A' के बराबर है ?

[If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then which one of the following is equal to A'?

- $(a)\begin{vmatrix} 2 & 1 & 3 \\ 5 & 4 & 6 \end{vmatrix}$ $(b)\begin{vmatrix} 4 & 5 & 6 \\ 1 & 2 & 36 \end{vmatrix}$ $(c)\begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix}$ $(d)\begin{vmatrix} 3 & 6 \\ 2 & 5 \end{vmatrix}$

यदि $y = log\sqrt{x}$ तो $\frac{dy}{dx}$ का मान निम्नांकित में से कौन होगा ? 31.

[If $y = log\sqrt{x}$ then which one of the following will be value of $\frac{dy}{dx}$?]

- $(a)^{\frac{1}{2x}}$
- (b) \sqrt{x}
- $(c)\frac{1}{2\sqrt{x}}$ $(d)\frac{\sqrt{x}}{2}$

यदि $y = \sin 2x$ तो $\frac{d^2y}{dx^2}$ का मान निम्नांकित में से कौन होगा ? 32.

[If $y = \sin 2x$ then which one of the following will be value of $\frac{d^2y}{dx^2}$?]

- (a) 2sin4x
- (b) $-4\sin 2x$ (c) $4\sin 2x$

 x^2 के परिवर्तन की दर तथा $\log x$ के परिवर्तन की दर का अनुपात निम्नांकित में से कौन होगा ? 33. [which of the following is the ratio of rate of change of x^2 and the rate of change of $\log x$]

- (a) 2x
- (b) $2x^2$
- (c)2

f(x)=√3 Sinx+Cosx का मान महत्तम x के निम्नांकित में से किस मान के लिए होगा ? 34. [The value of $f(x)=\sqrt{3}$ Sin x+Cos x will be maximum for which of the following value of x?]

- $(c)^{\frac{\pi}{2}}$

अवकल समीकरण $\{1+.(\frac{dy}{dx})^2\}^{3/2} = m\frac{d^2y}{dx^2}$ का घात निम्नांकित में से कौन होगा ? 35.

[Which one of the following is the degree of the differential equation{1+. $(\frac{dy}{dx})^2$ }] $^{3/2}$ = $m\frac{d^2y}{dx^2}$?]

- (a) 2
- (b) 3
- (c) 1

 $\int_0^1 e^x dx$ का मान निम्न में से कौन है ? 36 [which of the following is the value of $\int_0^1 e^x dx$?

(a) e - 1

(b) e

(c) 1

(d) इनमें से कोई नहीं (None of these)

यदि (if) f(-x) = -f(x) तो (then) $\int_a^a f(x) dx$ का मान निम्न में से कौन होगा ? 37 [If f(-x) = -f(x) then which of the following is the value of $\int_a^a f(x) dx$?

(b) 2f(a) (c) 0

(d) इनमें से कोई नहीं (None of these)

 $\int \frac{1+x}{x^2} dx = ?$ 38

(a) $\log x - \frac{1}{x} + c$ (b) $\frac{1}{x} - \log x + k$ (c) $\log x - \frac{1}{x^3} + k$ (d) इनमें से कोई नहीं (None of these)

निम्नलिखित में कौन समघाती अवकलन समीकरण नहीं है ? 39. [which of the following is not Homogeneous differential equation?] (a) $y^2 dx + (x^2 + xy) dy = 0$

 $(b)(x-y)dy + y^2dx = 0$

 $(c) \frac{dy}{dx} = \frac{y}{x} - \frac{y^3}{x^3}$

(d) $\frac{dy}{dx} = Sin \frac{y}{x}$

 $\overrightarrow{a} = -5\hat{j} + \hat{k}$ an $\overrightarrow{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ पर प्रक्षेप कामान निम्न में से कौन होगा ? 40 [which of the following will be the value of the projection of $\vec{a} = -5\hat{j} + \hat{k}$ on $\overrightarrow{b} = 4\hat{\imath} - 4\hat{\imath} + 7\hat{k}$]?

(a) 27

(b) 47

(c)7

(d) इनमें से कोई नहीं (None of these)

मूल विन्दू से विन्दू (-3,4,5) की दूरी निम्न में से कौन है ? 41. [which of the following is the distance of the point (-3,4,5) from the origin?]

(a) $25\sqrt{2}$

(b) $5\sqrt{2}$

(c) $10\sqrt{2}$

(d) इनमें से कोई नहीं (None of these)

किसी सरल रेखा के दिक् अनुपात 1,3, 5 है तो उसकी दिक्कोज्याएँ निम्न में से कौन होगा ? 42. [Which of the following will be direction cosines of the line which directions ratio are 1,3,5 ?] (a) $\frac{1}{\sqrt{35}}$, $\frac{3}{\sqrt{35}}$, $\frac{5}{\sqrt{35}}$ (b) $\frac{1}{9}$, $\frac{1}{3}$, $\frac{5}{9}$ (c) $\frac{5}{\sqrt{35}}$, $\frac{3}{\sqrt{35}}$, $\frac{1}{\sqrt{35}}$ (d) इनमें से कोई नहीं (None of these)

असमीकरण $ax + by \ge c$, ax + by > c, $ax + by \le c$ और ax + by < c में से संगत 43. समीकरण निम्न में से कौन है ?

[Which of the following is the corresponding equation of the each of in equations $ax + by \ge a$ c, ax + by > c, $ax + by \le c$ and ax + by < c

(a) ax + by = c (b) ax + by = 0 (c) bx + ay = c (d) इनमें से कोई नहीं (None of these)

गुणोत्तर व्यावरोध निम्न में से कौन है ? 44.

[Which of the following is the non-negative constraints?]

(a) $x \le 0, y \le 0$, (b) $x \le 0, y \ge 0$,

(c) $x \ge 0$, $y \ge 0$ (d) इनमें से कोई नहीं (None of these)

			**		
45.			•	न में से किस पाद में होगा $\gamma \geq 0$ will lie in which γ	
		(b) प्रथम (First)	(c) तृतीर्य (Third)	(d) द्वितीय (Second)	
46.	पर x अक्ष से गुजरे	गी ?		रेखा है, निम्न में से किस e, will pass through wh	
	of the following po	oint on the x -axis ?	?]		
	(a) $(\frac{c}{b}, 0)$	(b) $(\frac{c}{a}, 0)$	(c) $\left(0, \frac{c}{a}\right)$	(d) $\left(0, \frac{c}{b}\right)$	
47.				6 तो $P(A \cup B) + P(A \cap B) =$ then $P(A \cup B) + P(A \cap B) =$	
	(a) 0.4	(b) 0.8	(c) 0.12	(d) 0.9	
48.	सफलता की प्रायिक	ता है?		फेकना सफलता'' हो तो छ ess then the probability of	
	getting 6 success is ?]				
	1	3	7		

मान निम्न में से क्या होगा ? [If A and B are two mutually exclusive events $P(A) = \frac{1}{6}$ and $P(B) = \frac{1}{2}$ then which of the following is the value of $P(A \cap B)$?

- (a) $\frac{2}{3}$
- (b) 0
- (c) $\frac{1}{12}$ (d) इनमें से कोई नहीं (None of these)
- 50. यदि A और B दो परस्पर अपवर्जी घटनाएँ हो तथा $P(A) = \frac{1}{5}$ तथा $P(B) = \frac{2}{5}$ तो $P(A \cup B)$ का मान निम्न में से कौन होगा ? [If A and B are two mutually exclusive events $P(A) = \frac{1}{5}$ and $P(B) = \frac{2}{5}$ then which of the

following is the value of $P(A \cup B)$?

- (a) $\frac{3}{5}$
- (b) $\frac{2}{25}$
- (c) 0
- (d) इनमें से कोई नहीं (None of these)

SECTION (खण्ड) -II

NON-OBJECTIVE QUESTIONS (गैर-वस्तुनिष्ठं प्रश्न)

Time: [2 Hrs + 5 Min (Extra)]

Full Marks: 50

समय : 2 घंटा + 5 मि० (अतिरिक्त)

पूर्णांक

: 50

प्रश्न संख्या -1 से 22 तक लघुउत्तरीय कोटि के है। प्रत्येक प्रश्न के लिए 2 अंक निर्धारित है। किन्हीं 15 प्रश्नों को हल करना है। 2X15=30

Question no. 1 to 22 carry 2 marks each. These questions are of short answer type. You have to answer any 15 question out of 22. 2X15=30

- 1. x के लिए हल करें (Solve for x) $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$
- 2. यदि (If) $\begin{vmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{vmatrix} = \begin{vmatrix} -1 & 5 \\ 0 & 13 \end{vmatrix}$ तो (then) a, b, c और d का मान प्राप्त करें। [Find the value of a, b, c & d)
- 3. यदि (If) $y = e^x(sinx + cosx)$ तो दर्शाइयें कि (then show that) $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
- 4. यदि(If) $f(x) = \frac{\sin x}{x}$ जब (when) $x \neq 0, f(0) = 1$, तो क्या f(x), x=0 पर संतत है, क्यों?

[Is f(x) continuous at x = 0, why?]

- 5. सिद्ध करें कि (Prove that) $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$
- 6. यदि $fA \rightarrow B$ और $g: B \rightarrow C$ दो One-One on to फलन हो तो (gof). $^{-1} = f^{-1}o$ g. $^{-1}$
- 7. तीन छात्रों द्वारा एक प्रश्न को हल करने की प्रायिकताएँ $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ है तो प्रश्न को हल किये जाने की प्रायिकता निकालें। (The Probabilities of solving a problem by three students are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, find the probability that the problem will be solved)
- 8. उन तलों के समीकरण प्राप्त कीजिए जो तल 6x 3y + 2z + 9 = 0 के समानान्तर है तथा मूल विन्दु से दूरी 5 पर स्थित है [Find the equation of the planes parallel to the plane 6x 3y + 2z + 9 = 0 and at a distance 5 from the origin]
- 9. सरल रेखाओं $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ और $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ के बीच के लधत्तम दूरी निकालें। [Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

- 10. समाकलन करे (Integrate) $\int Sec x dx$
- 11. मान निकालें (Evauate) $\int_{2}^{3} \frac{1}{x \log x} dx$
- 12. अवकलन समीकरण $\frac{dy}{dx} = -4 x y^2$ का हल निकाले अगर दिया हो y = 1 जब x = 0 [Find the particular solution of the different equation $\frac{dy}{dx} = -4x y^2$ given that y = 1 when x = 0.
- 13. x का मान ज्ञात करें जबकि (find the value of x when) $\begin{vmatrix} x & 4 \\ 2 & 2x \end{vmatrix} = 0$
- 14. x और y का मान ज्ञात करें जबिक (find the value of x and y when) $\begin{vmatrix} 2 & 3 \\ y & x \end{vmatrix} = 4$ तथा and $\begin{vmatrix} x & y \\ 2 & 1 \end{vmatrix} = \frac{7}{2}$
- 15. यदि (If) $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix}$ और (and) $B = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix}$ तो (then find the value of) 2A-2B का हल ज्ञात कीजिए ?
- 16. (-2,2) बिंदू पर xy + 4 = 0 के लिए $\frac{dy}{dx}$ का मान निकालें ? (Find the value of $\frac{dy}{dx}$ for xy + 4 = 0 at (-2,2)]
- 17. यदि (If) $y = e^x (\sin x + \cos x)$ तो दर्शाइए कि (then show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
- 18. अवकल समीकरण ydx xdy = xydx को हल करें ? Solve the differential equation ydx xdy = xydx ?
- 19. x का मान ज्ञात करें जबिक निम्नांकित सिंदश परस्पर लम्ब हो (find the value of x when the following vectors are perpendicular to one another) $x\hat{\mathbf{1}} 3\hat{\mathbf{1}} + 5\hat{k}, -x\hat{\mathbf{1}} + x\hat{\mathbf{1}} + 2\hat{k}$
- 20. सिंदश $\hat{i} + 2\hat{j} + 3\hat{k}$ और $-3\hat{i} 2\hat{j} + \hat{k}$ से निर्धारित समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए। (Find the area of of the parllelograme determined by the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $-3\hat{i} 2\hat{i} + \hat{k}$)
- ्रा. एक खिलाड़ी के हाथ में 7 पत्ते है, इनमें 5 पत्ते लाल है और इन पांचों में दो बादशाह है। एक पत्ता यदृच्छया खींचा जाता है। इसके बादशाह होने की प्रायिकता निकालें जबिक यह मालूम है कि वह पत्ता लाल है। (A player has 7 cards in hand of which 5 are red and of these five 2 are kings A card is drawn at random. Find the probability that is a king, it is known that it is red)
- एक पासा के फेंकने में यदि विषम संख्या आती हो, तो उसके 1 से अधिक होने की क्या प्रायिकता है ?(What is the probability of the occurrence of a number greater than 1 if it is known that only odd number can occur ?)

प्रश्न संख्या—1 से 4 तक दीर्घ उत्तरीय कोटि के है। प्रत्येक प्रश्न के लिए 5 अंक निर्धारित है। प्रत्येक प्रश्न के साथ 'अथवा' का विकल्प दिया गया हैं। आपको प्रश्न या 'अथवा' में से किन्हीं एक का ही उत्तर देना है।

Question no. 1 to 4 carry 5 marks each. These questions are of long answer type Each question has an alternative as "or". You have to answer each question or its alternative (or)] 4X5=20

1. सिद्ध करें कि एक वृत के अन्तर्गत वृहत्तर क्षेत्रफल वाला आयत एक वर्ग है। (Prove that the rectangle of greatest area inscribed in a circle is a square)

Or अथवा

सिद्ध करें कि $\sin\theta(1+\cos\theta)$ का महत्तम मान $\theta=\frac{\pi}{3}$ पर होगा। [Prove that $\sin\theta(1+\cos\theta)$ has maximum value of $\theta=\frac{\pi}{3}$]

2. दीघवृत $\frac{x^2}{9} + \frac{y^2}{4} = 1$ का क्षेत्रफल निकालें ?

[Find the area enclosed by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$]

Or अथवा

सिद्ध करें कि (Prove that) $\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \int_0^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \log 2$

3. x का मान ज्ञात करों जबिक निम्नांकित सिदश परस्पर लम्ब हो। [Find the value of x when the following vectors are perpendicular to one and another]

$$x\hat{\imath} - 3\hat{\jmath} + 5\hat{k} \text{ or } - x\hat{\imath} + x\hat{\jmath} + 2\hat{k}$$
 Or अथवा

सिद्ध कीजिए की रेखाएँ $\frac{x-2}{4} = \frac{y+1}{3} = \frac{z-3}{5}$ and $(x+2y+3z-9=0=2 \ x-y+2 \ z-11)$ समतलीय है। उस तल का समीकरण भी ज्ञात कीजिये जिसमें ये दोनो रेखाएँ स्थित है।

(Prove that the lines $\frac{x-2}{4} = \frac{y+1}{3} = \frac{z-3}{5}$ and (x + 2y + 3z - 9 = 0 = 2x - y + 2z - 11)

are coplaner, find also the equation of the plane in which they lie.]

4. एक फर्नीचर व्यापारी मात्र दो वस्तुएँ मेज और कुर्सी बेचता है। उसके पास निवेश के लिए 5000 रू० है एवं केवल 60 वस्तुओं को रखने का स्थान है। एक मेज पर 250 रू० और एक कुर्सी पर 50 रू० की लागत आती है। वह एक मेज को 50 रू० एवं कुर्सी को 15 रू० लाभ के साथ बेच सकता है। यह मानते हुए कि वह जितनी वस्तुएँ खरीदता है उन्हें बेच सकता है उसे अपना धन किस प्रकार निवेशित करना चाहिए कि उसे अधिकतम लाभ हो। [A furniture dealer deals in only two items tables and chairs. He has Rs. 5000/- to invest and a space to to store at most 60 pieces. A table costs him Rs. 250 and a chair Rs. 50. He can sell a table at a profit of Rs. 50 and a chair at a profit of Rs 15. Assuming that he can sell all the items that he buys how should he invest his money in order that he may maximise his profit)

Or अथवा

ग्राफ द्वारा निम्न रैखिक प्रोग्रामिक समस्या को हल करें। (Solve the following linear Programming problem graphically) न्यूनतमीकरण करें (Minimise)

$$z = 200 x + 500 y$$

Subject to the constraints:

$$x + 2y \ge 10$$

$$3 x + 4y \le 24$$

$$x \ge 0, y \ge 0$$

CHAPTER DISTRIBUTION

Topics	Total alloted Marks	Long type	short type	Objectives
Realations & functions	10		3	6
Algebra	13		4	7
Calculus	40	2 or	8	20
Vectors & 3D Geometry	18	1 or	4	7
Linear Ineuqlities & Linear Programming	9	1 or		4
Probability	10		3	6

वस्तुनिष्ठ प्रश्नों का उत्तर (Answer of Objective Questions)

1	d	26	С
2	С	27	С
3	b	28	а
4	b	29	b
5	С	30	С
6	b	31	а
7	С	32	• b
8	b	33	b
9	C	34	d
10	С	35	а
11	С	36	а
12	b	37	С
13	b	38	а
14	b	39	b
15	b	40	а
16	С	41	b
17	b	42	a
18	b	43	а
19	а	44	С
20	а	45	b
21	С	46	b
22	b	47	b
23	а	48	а
24	b	49	b
25	С	50	а